

Other Products

- Solid-State Power Amplifiers and SSPA Systems
- Solid-State Power BUCs and SSPB Systems
- Low Noise Amplifiers and LNA Systems
- Low Noise Block Converters and LNB Systems
- Block Up and Block Down Converters
- Synthesized Converters
- Line Drive Amplifiers
- Power Supply Monitors
- Redundant Control Panels for SSPAs, SSPBs, and LNAs

GENERAL DYNAMICS SATCOM Technologies

Ka-Band Low Noise Amplifiers

LK-20S000 Series

Wideband coverage
Noise temperatures to 110° K
High reliability HEMT design

Input/output isolators

Reverse polarity protection

GENERAL DYNAMICS SATCOM Technologies

customercare@gd-ms.com • gdmissionsystems.com/satcom Phone: +1-770-689-2040

©2017 General Dynamics. All rights reserved. General Dynamics reserves the right to make changes in its products and specifications at anytime and without notice. All trademarks indicated as such herein are trademarks of General Dynamics. All other product and service names are the property of their respective owners. ® Reg. U.S. Pat. and Tm. Off.

Overview

LK-20S000 series Ka-Band Ultra Low Noise Amplifiers are specially designed for satellite earth station and other telecommunications applications. Utilizing state-of-the-art HEMT and GaAs FET technology, these amplifiers have been designed for both fixed and transportable applications. High performance models are available with noise temperatures from 130° K to 110° K. All noise temperature specifications are guaranteed over the full bandwidth of the LNA.

- Low gain, 50 dB typical
- High Output power, P1 dB = +20 dBm minimum
- Excellent guaranteed gain stability due to built-in
- Temperature compensation circuit (test data provided) Universal input AC power supply

Parameter	Notes	Min	Nom./Typ.†	Max.	Units
Frequency	Band "A" Band "B"	18.2 20.2		20.2 21.2	GHz GHz
Gain	Standard Option 1	57 47	60 50	63 53	dB dB
Gain Flatness	Full band Per 40 MHz			±1.0 ±0.2	dB dB
VSWR	Input Output		1.25 1.40	1.30 1.50	:1 :1
Noise Temperature ^A	At +23 °C Versus temperature		See Table 2	See Table 1	
Power Output at 1 dB compression (P ₁ dB)	Standard Option 2	+12 +20	+14 +22		dBm dBm
3rd Order Output Intercept Point, OIP ₃	Standard Option 2	+22 +28	+24 +30		dBm dBm
Group Delay per 40 MHz	Linear Parabolic Ripple			0.01 0.001 0.1	ns/MHz ns/MHz² ns p-p
AM/PM Conversion	-5 dBm Output			0.05	°/dB
Gain Stability (Constant Temp.)	Short term (10 min) Medium term (24 hrs) Long term (1 week)		±0.1 ±0.2 ±0.5		dB dB dB
Gain Stability	Versus temperature (Standard) Improved stability (Option 3) over operational temp range		-0.06	2.0	dB per °C dB pk-pk
Maximum Input Power	Damage threshold Desens. threshold 29.0–31.0 GHz			0 -25	dBm dBm
Connectors	Input Output Power		WR42 Cover Flange (#4-40 THD holes) SMA Female PT02E-8-4P-027 (mate supplied)		
Power Requirements	Voltage (Standard) Current, @ P, dB (Standard) Current, @ P, dB (Option 1) Current, @ P, dB (Option 2) Voltage (Option 4) ^B	11 90	15	24 600 400 600 265	Vdc mA mA MA Vac
Operating Temperature	T _{AMB} (Standard) T _{AMB} (Option 4) ^B	-40 -40		+70 +60	0° 0°

[†]When there is only one value on a line, the Nom./Typ. column is a nominal value; otherwise it is a typical value. Typical values are intended to illustrate typical performance, but are not guaranteed.

^AMaximum noise temperature at +23 °C at any frequency in the specified band.

^B Consult factory for AC power option.

Table 1 – Part Number/Ordering Information

Frequency Range	18.2–20.2 GHz A 20.2–21.2 GHz B
Noise Temperature	130 K 120 K 110 K
Gain	60 dB typ 50 dB typ
Output Power	+12 dBm min +20 dBm min
Compensation	Standard Temperature Compensati
Power Configuration	+11 to +24 Vdc 90-265 Vac, 47-63 Hz (Co
Finish Color	Commercial White Green (Fed Std 595B; #3- Tan (Fed Std 595B; #333

Table 2 – Noise Temperature vs. Ambient Temperature

Noise temperature vs. ambient temperature can be found from the equation,

$NT_2/NT_1 = (T_2/T_1)^{1.8}$

where:

 NT_2

 T_2

- Noise Temperature at T₂ =
- NT_1 Noise Temperature at T₁ =
 - = Temperature 2 in K
- Temperature 1 in K Τı =
 - (K = °C + 273)

Example: For model LKB20S110-XXXXX, NT₁ = 110 K at +23 °C; what is NT₂ at +50 °C? From the table, NT₂ /NT₁ at 50 $^{\circ}$ C = 1.17: NT₂ = 1.17 x (110 K) = 128.7 K at 50 $^{\circ}$ C

Typical Applications

Ka-Band Low Noise Amplifiers

For the case where $T_1 = 296$ K (+23 °C), the ratio NT_2 / NT_1 is shown in the table below:

Ambient Temperature	Ratio		
T₂ (°C)	NT ₂ /NT ₁		
0	0.86		
+23	1.00		
+40	1.11		
+50	1.17		
+60	1.24		