March 26, 2014

SPECIFICATION

FOR APPROVAL

ATTEN:

APPROVED

ΒY

ΒY

Model No. NJR2825

If this specification is acceptable, we would like you to return one copy to us with your signature of approval.

NEW JAPAN RADIO CO.,LTD.					
QUALITY ASSURANCE SECTION MICROWAVE COMPONENT DIVISION					
APPROVED BY					
CHECKED BY					
DRAWN BY					

Page 1 of 11

1 SPECIFICATIONS

1.1 Low Noise Block Converter – LNB

1.1.1 LNB Electrical Specifications

The LNB **shall** comply with electrical, mechanical, and environmental performances as per the requirements outlined in this spec. Additionally, the LNB is intended to operate in BPSK, QPSK, 8PSK, and 16-APSK modes.

ltem	LNB Electrica	I Specification	Min	Nom	Max	Units	
Input/Output Frequency Range							
1	Input Frequency		19.2		20.2	GHz	
2	Output Frequency Range		950		1950	MHz	
		LNB Input Characteris	stics				
3	Input Composite Signal L	evel (up to 1000 MHz BW)	-125		-73	dBm	
4	Noise Figure	@ +25 deg C			1.3		
		over all environmental conditions			1.6	dB	
Gain/Output Characteristics							
5	LNB Gain		65		75	dB	
6	Output P1dB		+10			dBm	
7	IF Output IP3		+20			dBm	
8	Tx Band Intermodulation and spurious products	Interference Rejection					
	(Tx at >29.0GHz with inpu LNB input)	ut level up to -43dBm at			-20	dBc	
	[OMT+TRF isol	ation ≥ 80dB]					
9	Pass Band Flatness (with	respect to 1450 MHz)			+/- 4	dB	
10	Gain ripple variation over	any 45MHz			+/- 1	dB	
11	Group delay variation over any 45MHz				2	ns p-p	
		Local Oscillator Characte	eristics				
12	Frequency Conversion			No Ir	version		
13	LNB Type		Internal Reference PLL			LL	
14	LO Frequency			18.25		GHz	

Table 1: LNB Electrical Specifications

NJR2825	CMSE-R2825(1)-1.0		
	Page 2 of 11		

GX LNB Specifications

New Japan Radio Co., Ltd.	Confidential and Proprietary
---------------------------	------------------------------

15	LO Initial Offset at +25 de	eg C		+/- 1	ppm
16	LO Stability over tempera		+/- 3	ppm	
17	LO Drift Rate (over all en		+/- 22	ppb/s	
18	LO Discrete Frequency J environmental conditions			+/- 10	ppb
19	Phase noise:	0.1 KHz		-60	
	(Mask as target over all	1 KHz		-75	
	environmental conditions. Shall meet	10 KHz		-78	dBc/Hz
	Integrated Phase Error	100 KHz		-90	
	Specification)	1000 KHz		-105	
20	Integrated Phase Jitter (D	DSB) (1KHz – 1MHz)		2.0	Deg RMS
		Spurious Characteris	tics		
21	IF Spurious Output with F	•			
		-118 dBm to -73 dBm	-27		dBc
		-125 dBm to -119 dBm.	-20		
22		IF Spurious output with Tx Signal (29.0- 31.0GHz) of -43dBm max input to LNB		-20	dBc
	Tx Signal Immunity	Gain Suppression with Tx Signal of -20dBm max input to the LNB		0.2	dB
		Noise Figure degradation with Tx Signal of -20dBm max input to the LNB		0.2	dB
23	LO Leakage at Waveguid	le		-37	dBm/ 100KHz
24	Image Rejection		40		dB
		DC Power Characteris	stics		
25	DC Power:				
	The LNB DC power from supported from the ICM of must be provided by the On/Off control via AIM	or SCM. LNB DC power	+12	+30	VDC
26	DC Power Consumption			4	W
27	Supply Voltage Noise Im	munity	100		mVp-p

NJR2825	CMSE-R2825(2)-1.0		
	Page 3 of 11		

		10Hz – 2MHz				
28	Supply Voltage Noise Emission	10Hz – 2MHz			150	mVp-p
29	LNB MTBF		Telecord Predictiv	ia Parts C e Method	lculation pe ount Relial (MIL-HDBI hours at +	bility ≺-217F)

1.1.2 LNB Interface

Table 2: LNB Input/Output Interface Specifications

Item	LNB Electrical Specification	Min	Nom	Мах	Units			
	Interface Characteristics							
1	1 Input Waveguide Grooved WR-42. Waveguide location and orientation as per CMSF-R2825(1) 1.0.							
2	Input VSWR	2.1:1						
3	Output Connector	N-type Connector						
4	Output Impedance		50		ohm			

1.1.3 LNB Mechanical

Table 3: LNB Mechanical Specifications

ltem	LNB Mechanic	al Specification	Min	Nom	Мах	Units
1	General Description		The LNB shall be housed in a solid, fu sealed aluminum die cast enclosure w cooling fins for the outdoor environmer			losure with
2	Main Body Envelop Di	mension	Refer to CMSF-R2825(1)-1.0			
3	Weight				0.4	kg
4	*Center of Gravity	Х	45.2		55.2	
	(CG). Relative to W/G input flange	Y	-5		5	mm
	surface	Z	3.2		13.2	
5	 Input Waveguide Grooved WR-42 with #4-40 tapped mounting holes. Waveguide location a orientation as per CMSF-R2825(1)-1.0 					ocation and
6	 Waveguide Hardware Kit Silicon-typ-R2825-1.0e O-ring, #4-4 Stainless-Steel screws with captive lowashers. 				•	
7	Earth Grounding Tag	M4, (6n	nm depth i	nner thread	d or equiv.)	

NJR2825	CMSE-R2825(3)-1.0		
	Page 4 of 11		

New Japan Radio Co., Ltd. Confidential and Pro
--

Item	LNB Mechanical Specification	Min	Nom	Мах	Units	
8	Passivation	RoHS Compliant Chromate				
9	Finish	Powder coated cured or spray paint equiv.				
10	Color	Semi-dull White or equiv.				

The physical mechanical attributes of the LNBs from NJRC is shown in CMSF-R2825(1)-1.0

1.2 Environmental Specifications

The following sections describe the environmental specifications for the LNB.

- 1. The term "operational" used below indicates compliance to all of the performance and functional specifications listed in this specification as they apply to the LNB.
- 2. The term "survival" used below indicates the capability to be exposed for short intervals to the specified environment and recover without damage to a fully "operational" condition. Unless otherwise specified, all non-operational configurations are un-powered.
- The term "storage" used below indicates the capability to be exposed for long intervals to the specified environment and recover without damage to a fully "operational" condition. All units in storage are in a power-off state.

1.2.1 Temperature

1.2.1.1 Operational Temperature

The LNB **shall** remain operational over an ambient air temperature range of -40 °C to +73 °C at sea level without any degradation of performance per IEC-60945 and IEC-60721-3-6, Class 6K4.

In the remote event that the LNB do not comply to full performance at a temperature below - 25 °C, the default fall back is with the de-ice system enabled in order to maintain an internal radome temperature above -25 °C. The maximum allowable outside radome air temperature transition rate for the stabilized Antenna system is 3 °C per minute, but no more than 20 °C per hour.

1.2.1.2 Survival Temperature

The LNB **shall** survive over an ambient air temperature range of –40 C to +80 °C when tested in accordance with IEC60068-2-1; Method-Ad, and IEC60068-2-2; Method-Bd. The LNB are powered on and in a non-functional state.

1.2.1.3 Storage Temperature

The LNB **shall** have a storage temperature range of –40 °C to +85 °C when tested in accordance with IEC-60945 Dry Heat and Low Temperature storage test method.

The term "storage" indicates the capability to be exposed for long intervals to the specified environment and recover without damage to a fully "operational" condition. All units in storage are in a power-off state.

NJR2825	CMSE-R2825(4)-1.0	
	Page 5 of 11	

1.2.2 Waterproofing

The LNB with IP65 rating **shall** remain watertight when subject to 12.5mm nozzle, 100 l/min at 3m water spray per IEC 60945 water proofing test specification.

1.2.3 Salt Environment

The LNB **shall** not show any sign of oxidation or degradation of the exterior surface finish when subjected to a corrosion (salt mist) test per IEC 60945.

1.2.4 Humidity

The LNB **shall** remain operational over a relative humidity range of 20% to 100% condensing when tested at 40 °C. The maximum humidity transition rate is 20% per hour.

1.2.5 Altitude

The LNB, in a non-operational configuration, **shall** survive without damage when exposed to altitudes up to 15,000 feet or 4572 meter (air freight). The maximum rate of change is 2,000 feet per minute or 610 meter per minute.

1.2.6 Vibration

1.2.6.1 Operational Vibration

The LNB **shall** remain operational with no performance degradation when tested under IEC 60945.

IEC 60945 Operational Vibration		
Frequency (Sinusoidal)	Displacement	
1 to 13.2 Hz	+/- 1mm	
13.2 to 100 Hz	7m/s^2	
Frequency Sweep Rate	0.5 Octaves/min	

Table 4: Terminal Operational Vibration

1.2.6.2 Survival Vibration

The LNB will survive, although it may not meet its operational specifications, when exposed to vibration per IEC 60721 as specified below:

Environmental Condition	Test Level	Test Protocol	Reference
Systematic Vibration		IEC 60068-2-	IEC 60721-3-6,
Amplitude	5.0 millimeters (0-Peak)	6, Method Fc	Class 6M3
Acceleration	2.0 G (20 m/s ²)		Modified by

N IR2825	CMSE-R2825(5)-1.0	
NJR2825	Page 6 of 11	

Frequency Range	1Hz-150 Hz		IEC 60721-4-6
-----------------	------------	--	---------------

Additionally, the LNB will meet the following endurance test at its resonance frequency without damage or degradation:

• DNV Standard No. 2.4, Class C

1.2.7 Shock

1.2.7.1 Operational Shock

The LNB **shall** meet the following shock profile with performance degradation or data transmission error as per the table below. All shock tests are half sine on x, y, z axis. Test method per IEC 60068-2-27 Method Ea.

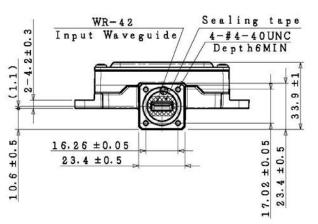
Shock Test	Transient Errors	Soft Errors	Hard Errors	Physical Damage
2g, 20ms	0%	0%	0%	0%
4g, 20ms	5%	0%	0%	0%
10g, 11ms	25%	10%	0%	0%
20g, 7ms	50%	10%	0%	0%

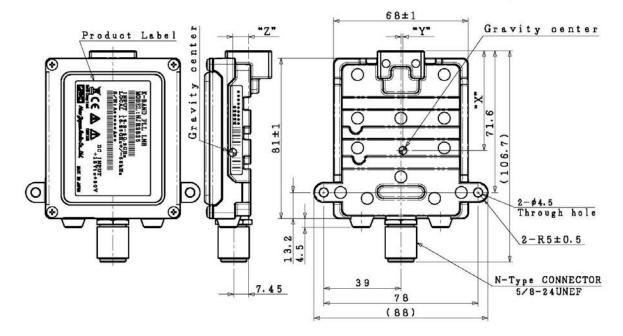
Table 6: BUC/LNB Shock Profile

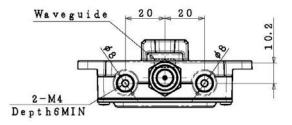
Transient Errors	The system automatically recovers without significant loss of time or data. An example of this type of error is a bit error.
Soft Errors	The error is a temporary alteration of data that is recoverable without reset. An example of this type of error is a loss of lock.
Hard Errors	The error requires manual intervention for recovery, and results in an unplanned reset or causes permanent corruption of data.
Physical Damage	This is a permanent change in system characteristics or damage to a system component rendering the product unsuitable for sale as new. This does not include cosmetic damage caused by shock and vibration test fixtures.

1.2.7.2 Survival Shock

The LNB will survive, although it may not meet its operational specifications, when exposed to the following IEC-60721 per table below.


Environmental Condition	Test Level	Test Protocol	Reference
----------------------------	------------	---------------	-----------


N IR2825	CMSE-R2825(6)-1.0	
1131(2023	Page 7 of 11	


Shock (Transient Vibration) Response Spectrum Peak Accel., m/s ² Duration, ms		II 300 6	IEC 60068-2- 27, Method Ea: Shock (half-sine)	IEC 60721-3- 6, Class 6M3 Modified by IEC 60721-4-6
Number of Cycles Directional Changes	3 each 6	n direction		
Shock (Bump) Peak Accel., m/s ² Duration, ms Number of Cycles Directional Changes	250 6 100 ea 6	a. direction	IEC 60068-2- 29, Method Eb: Bump (Spectrum II)	IEC 60721-3- 6, Class 6M3 Modified by IEC 60721-4-6

NJR2825	CMSE-R2825(7)-1.0	
1131(2025	Page 8 of 11	

CMSF-R2825(1)-1.0: LNB Mechanical Dimension

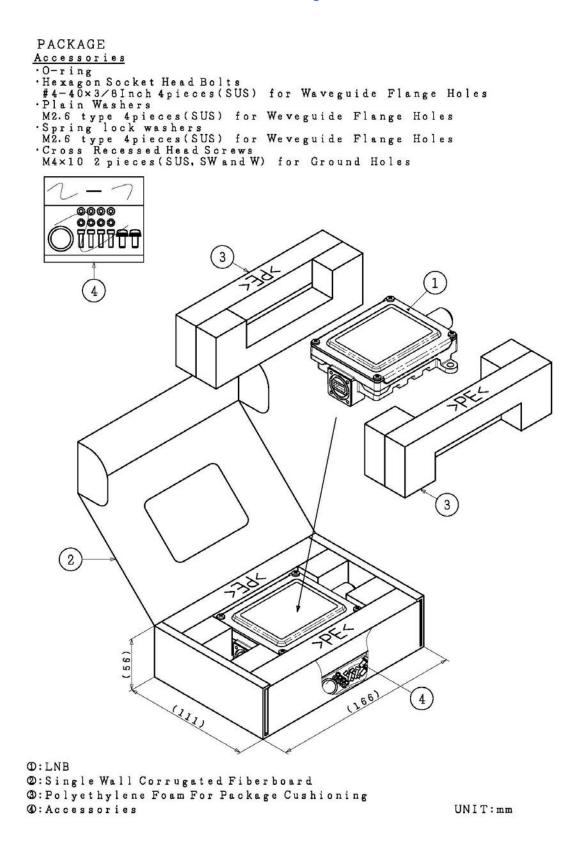
<u>UNIT:mm</u> Tolerance:±0.3

NJR2825	CMSF-R2825(1)-1.0
	Page 9 of 11

LNB Label

 Definition of Serial Number -Serial Number(ASSSSBYM)-ALPHANUMERIC(9 characters)

$S \times N : A$	1000	01A41
A:Over flow No. (A99999A→B00001A)		Y:Year
SSSSS:Running serial	number	and a second


1. Serial number:ASSSSSBYM
A:Over flow No.(A99999A→B00001A)
SSSSSS:Running serial number.
 starting 00001
B:REV No.
Y:Production year
M:Production month

NJR2825	CMSF-R2825(2)-1.0
	Page 10 of 11

GX LNB Specifications

New Japan Radio Co., Ltd. Confidential and Proprietary

LNB Packing

NJR2825	CMSP-R2825(1)-1.0
	Page 11 of 11