

STA4375 Ku Series 750W Ultralinear Ku-Band Antenna Mount HPA

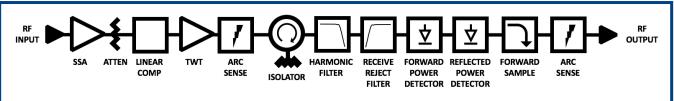
FEATURES

Ultralinear Lightweight High Efficiency Broadband

STA4375 Ku series 750W Antenna Mount HPA

The STA4375 Ku series HPA provides ultra linear, high efficiency performance in a compact, lightweight, rugged, weatherproof, antenna mount enclosure. The advanced packaging and cooling techniques enable the unit to operate in extreme environmental conditions from direct rain to direct sunlight. The amplifiers can be simply deployed anywhere in the world, are user-friendly and incorporate a comprehensive remote control facility as standard, including RS485, RS232 and Ethernet options.

The HPA incorporates a high efficiency multi-collector TWT powered by an advanced power supply built on over 30 years of experience in the design and manufacture of satellite amplifiers.


The company's products have an enviable reputation for performance, robust quality and reliable service.

The STA4375 Ku is available with a wide range of options and accessories, backed by worldwide technical support.

Features

- Advanced cooling design enables operation at +60°C and in direct sunlight
- Weatherproof antenna mount construction allows exposed mounting
- Ethernet/SMP/Webpage GUI interfaces
- Broadband high efficiency operation

- CE complaint
- Wide input voltage range can operate from mains supplies worldwide
- Redundant control contains control and drive circuits for 1:1 redundancy
- Stand-alone setting automatically sequences to transmit mode
- Wide range of accessories including: Controllers, waveguide networks, cable assemblies

RF Performance:

Frequency KU1 KU2 KU3 KU4 Bandwidth	13.75 – 14.50 GHz 12.75 – 14.50 GHz 13.75 – 14.80 GHz 12.75 – 13.25 GHz 500 MHz / 750 MHz
Output Power	(for load VSWR ≤ 1.5:1)
TWT Power, PEAK	58.8 dBm (750 W)
Rated (flange)	58.3 dBm (675 W) typical
Linear, P _{LIN}	55.3 dBm (340 W)

\sim	_	:		
G	а	I	r	1

Gain	$\geq 70 \text{ dB}$
Variation, 80 MHz, ΔG_{80MHz}	\leq 0.8 dB peak-peak
Variation, 750 MHz, $\Delta G_{750\text{MHz}}$	\leq 2.5 dB peak-peak
Slope, ΔG_{SLOPE}	\pm 0.04 dB/MHz
Gain Stability vs. Time @constant drive & temp	\pm 0.25 dB/24 hours

Gain Stability vs. Temperature ± 1.0 dB @ constant drive & frequency

Adjustment range, GADJ 30.0 dB typical

Adjustment step size

Linearity

AM/PM	@ P ₀ ≤	P_{LIN} - 1dB	$\leq 2.0^{\circ}/dB$

Inter-modulations (IMD) 2-tone

 \leq -28 dBc @ $P_0 \leq P_{LIN} - 1 dB$ Spectral Re-growth (SR) \leq -30 dBc @ P_O \leq P_{LIN} - 1 dB Noise Power Ratio (NPR) \leq -19 dBc @ $P_0 \leq P_{LIN} - 1 dB$

0.1 dB

Input VSWR (Return Loss) ≤ 1.3:1 (17.7 dB) Output VSWR (Return Loss) ≤ 1.3:1 (17.7 dB) Load VSWR (no damage) ≤ 2.0:1 (9.5 dB) Harmonic 2nd & 3rd

Noise Power

Transmit Band (T_x) ≤ -70 dBW/4KHz Receive Band (Rx) ≤ -150 dBW/4KHz (10.65 - 11.75/12.75 GHz)

≤ -60 dBc

≤ -60 dBc Spurious @ Po ≤ MLP

Residual AM ≤ -50 dBc, f < 10KHz

≤ -20(1.5+LOG(frequency KHz))dBc,

f = 10KHz to 500KHz≤ -85 dBc >500KHz

Phase Noise 10 dB below IESS requirement ≤ - 50 dBc, AC fundamental

≤ - 47 dBc, Sum of all spurs

Group Delay (any 80 MHz)

Linear 0.01 nsec/MHz, max 0.005 nsec/MHz², max Parabolic 0.5 nsec/Peak-Peak, max

Prime Power:

AC Input Voltage 200-240 VAC \pm 10%, single phase

50-60 Hz \pm 5%

Full Load Current 12.5 A max @ 200 VAC

Power Consumption 2200 VA typical

2450 VA maximum

Power Factor 0.98 typical 0.96 minimum

Environmental:

Ambient Temperature -40°C to +60°C Relative Humidity 100% condensing

Altitude 12,000 ft. with standard adiabatic de-

rating of 2°C/1000 ft., operating

50,000 ft., non-operating

Shock 15 g peak, 11mSec, 1/2 sine

Vibration 3.2 g rms, 10-500 Hz

Acoustic Noise 65 dBA @ ≥3 ft. from amplifier

1120 2/m² Solar Gain

Mechanical:

Ethernet

M&C Connector

Dimensions	Request outline
Length	52 cm
Width	26 cm
Height	26 cm
Weight	21 kg typical
RF Input	Type N(f) 50 ohm
RF Output	WR-75
	WK-75
RF Sample	Type N(f) 50 ohm

PT07E18-32S (MS3114E-18-32S)

RJF71B