128×128 L-band Harrier Matrix ultra compact, with

 configurable inputs \& outputsETL's new ultra compact Harrier matrix provides routing for up to 128 input and output feeds, with integrated LNB powering in a 10 U high chassis. The configurable design offers a range of input and output modules (IO modules) with features to suit specific RF needs for each satellite feed. The matrix can be expanded from 8×8 up to 128×128 in blocks of 8 .

Configurable input and output modules with features to suit specific RF needs for each satellite feed, including fixed gain, variable gain, LNB powering \& fibre inputs

Module Options

PASSIVE INPUT/OUTPUT

- Passive input or output module (0 dB gain matrix)
- RF power sensing

PASSIVE LNB INPUT

- Passive input module (0 dB gain matrix)
- $13 / 18 \mathrm{~V}$ \& 22 kHz tone LNB powering
- RF power sensing

- Active variable gain input module (-10 to +20 dB , in 0.5 dB steps)
- Variable slope (0 to 6 dB , in 1 dB steps)
- RF power sensing

ACTIVE LNB INPUT

- Active variable gain input module (-10 to +20 dB , in 0.5 dB steps)
- Variable slope (0 to 6 dB , in 1 dB steps)
- LNB powering
- RF power sensing

ACTIVE FIBRE INPUT

- Optical fibre input module
- AGC with settable output power level
- RF power monitoring

ACTIVE OUTPUT

H-OP-08

- Active variable gain input module (up to +30 dB)
- Variable slope
- RF power sensing

Minimal training with capacitive touchscreen controls, intuitive HMI and an improved web browser interface

850-2450 MHz operating frequency range. Ka-band ready.

N
 Temperature monitoring with intelligent fan speed control

Minimal downtime in the unlikely event of a failure all active components can be hot-swapped without the need to re-boot the matrix. This includes power supplies, CPU modules, RF modules \& fan trays
Resilience from dual redundant power supplies \& dual redundant CPU modules providing 128 inputs $\times 128$ outputs with integrated LNB powering. Expandable in blocks of 8 .

LNB Powering 13/18V \& 22 kHz tone available

Power savings as only active signal routes are powered. This provides a greatly reduced power consumption compared to traditional matrices

Typical applications:

- Managing multiple inputs for growing satellite teleports
- Extended L-band frequency for Ka-band \& HTS applications
- Routing live traffic to multiple modems

(ett

Model Number:

HAR-40

Flexibility \& Reliability

Tune the matrix for optimum system performance

Harrier Rear Panel

10 (Input and Output) modules can be mixed and configured to exact earth station requirements within the same matrix.

- For distant antennas, fibre modules can be used on the inputs of the matrix
- For large antennas, passive input or output modules can be installed to provide unity gain
- For smaller antennas or weak signals, variable gain, active input modules are ideal

Impedance mismatch problems can be avoided with the option of mixed impedances on IO modules (input to input or input to output).

64 input modules and 64 output modules are installed on a fully populated 128×128 matrix.

Hot-swap, dual redundant CPU modules

Hot-swap input matrix cards (IMC), middle matrix cards (MMC) and output matrix cards (OMC)

Configuration Options:

Passive Input Module (H-IO-01) with Passive Output Module (H-IO-01) - No LNB option Passive Input Module (H-IN-04) with Passive Output Module (H-IO-01) - LNB option

Technical specifications and operating parameters						
Capacity			128 inputs $\times 128$ outputs		Non-blocking	
Frequency Range			850-2450 MHz (Extended L-band)			
Gain			$0 \mathrm{~dB}(\pm 2.0 \mathrm{~dB})$		Relative to the mean gain across the frequency range	
Gain Tracking (Typ.)			4 dB		Difference in mean gain between any two outputs when the same input is routed to both. Measured at OdB gain	
Noise Figure (Typ.)	L-band (up to 2150 MHz)		20 dB		Maximum (worst case) $=$ Typ. +2 dB	
	Full band (up to 2450 MHz)		22 dB			
Group Delay Variation (Max.)	$950-2150 \mathrm{MHz}$		$\pm 0.5 \mathrm{~ns} \mathrm{pk-pk}$		Peak to peak, across the specified bandwidth	
	$850-2450 \mathrm{MHz}$		$\pm 0.5 \mathrm{~ns} \mathrm{pk}$-pk			
	Any 36 MHz		± 0.25 ns pk-pk			
RF Input Power Sensing Range			-5 to -55 dBm			
Absolute Maximum RF Input Power			$+20 \mathrm{dBm}(100 \mathrm{~mW})$		No damage level. Operation beyond this level may cause damage to the product	
Isolation	I/P - I/P		$+80 \mathrm{~dB}\left(\right.$ typ. ${ }^{2}$), +60 dB (min.)		Between any pair of input ports	
	O/P - O/P		+80 dB (typ.2), +60 dB (min.)		Between any pair of output ports	
	I/P - O/P		+60 dB (typ.2), +50 dB (min.)		Between any pair of input and output ports	
Input P1dB 1dB gain compression point, output power	Typical		+0 dBm			
	Worst case typical		-2 dBm			
Output IP3 3rd order intercept point, output power	$850-2150 \mathrm{MHz}$	Typical	+15 dBm		Worst case typical -2 dBm	
	$850-2450 \mathrm{MHz}$	Typical	+10 dBm		Worst case typical -2 dBm	
Signal Related Spurs (Max.)			$-60 \mathrm{dBc}$		Relative to carrier in the $850-2450 \mathrm{MHz}$ band	
Non-Signal Related Spurs (Typ.)			-110 dBm in 10 kHz		Measured in a 10 kHz bandwidth, DC-6GHz	
LNB Powering Available with $\mathrm{H}-\mathrm{N}-04$ input IO module	LNB Voltages		0/13/18VDC User selectable			
	LNB Current (Max.)		400 mA max Fitted with short circuit protection			
	22 KHz tone		$0 / 22 \mathrm{kHz}$ tone ON/OFF User selectable			
Connector \& Impedances			50Ω SMA	$50 \Omega \mathrm{BNC}$	$75 \Omega \mathrm{BNC}$	75Ω F-type
Gain Flatness (Typ.)	L-band (950-2150 MHz)		$\pm 1.50 \mathrm{~dB}$	$\pm 1.50 \mathrm{~dB}$	$\pm 1.75 \mathrm{~dB}$	$\pm 1.75 \mathrm{~dB}$
	Full band ($850-2450 \mathrm{MHz}$)		$\pm 2.50 \mathrm{~dB}$	$\pm 2.50 \mathrm{~dB}$	$\pm 2.75 \mathrm{~dB}$	$\pm 2.75 \mathrm{~dB}$
	Any 36 MHz		$\pm 0.50 \mathrm{~dB}$	$\pm 0.50 \mathrm{~dB}$	$\pm 0.65 \mathrm{~dB}$	$\pm 0.65 \mathrm{~dB}$
Input Return Loss	Typical		17 dB	17 dB	16 dB	16 dB
	Minimum		13 dB	13 dB	12 dB	12 dB
Output Return Loss	Typical		17 dB	17 dB	16 dB	16 dB
	Minimum		13 dB	13 dB	12 dB	12 dB
Spec Version			1.2			

ETL Systems

Configuration Options:

Optical Input Module (H-IN-03) with Passive Output Module (H-IO-01)

Technical specifications and operating parameters					
Input Plane: Optical Input Ports					
Capacity		128 inputs		Non-blocking	
Optical Input Wavelength Range		1100 to 1650 nm			
Optical Input Power Range		-9.5 dBm to +5 dBm			
Input Optical Connector Options		FC/APC \& SC/APC		Single mode fibre, Angle Polished Connectors only	
Output Plane: RF Output Ports					
Output RF Frequency Range		$850-2450 \mathrm{MHz}$ (Extended L-band)			
Output Gain Tracking (Typ.)		4 dB		Difference in mean gain between any two outputs when the same input is routed to both. Measured at OdB gain	
Output Connector \& Impedances		50Ω SMA	$50 \Omega \mathrm{BNC}$	75Ω BNC	75Ω F-type
Output Return Loss	Typical	14 dB	14 dB	12 dB	12 dB
	Minimum	10 dB	10 dB	10 dB	10 dB
System performance: (RF to fibre \& back to RF)					
Gain		$0 \mathrm{~dB}(\pm 2 \mathrm{~dB})$		Test condition: When passive 10 module $\mathrm{H}-\mathrm{IO}$-01 is fitted at the output ports	
Output AGC Flatness (Typ.)		$\pm 3.5 \mathrm{~dB}$		Test condition: Full TX \& RX link with 1 m fibre link using transmitter SRY-TX-L1-103 (1310nm). Input levels within -10 to -40 dBm	
Output Connector \& Impedances		50Ω SMA	$50 \Omega \mathrm{BNC}$	$75 \Omega \mathrm{BNC}$	75Ω F-type
Gain Flatness (Typ.)	Full band (850-2450 MHz)	$\pm 2.75 \mathrm{~dB}$	$\pm 2.80 \mathrm{~dB}$	$\pm 3.00 \mathrm{~dB}$	$\pm 3.00 \mathrm{~dB}$
	L-band ($950-2150 \mathrm{MHz}$)	$\pm 2.50 \mathrm{~dB}$	$\pm 2.60 \mathrm{~dB}$	$\pm 2.75 \mathrm{~dB}$	$\pm 2.75 \mathrm{~dB}$
	Any 36 MHz	$\pm 0.50 \mathrm{~dB}$	$\pm 0.60 \mathrm{~dB}$	$\pm 0.65 \mathrm{~dB}$	$\pm 0.65 \mathrm{~dB}$
		Test condition: Full TX \& RX link with 1 m fibre link using transmitter SRY-TX-L1-103 (1310nm). Fixed gain mode.			
Group Delay Variation (Max.)	$950-2150 \mathrm{MHz}$	$\pm 1.5 \mathrm{~ns} \mathrm{pk}$-pk		Peak to peak, across the specified bandwidth Full TX \&RX link with 1 m fibre link using transmitter SRY-TX L1-103 (1310nm). Fixed gain mode	
	$850-2450 \mathrm{MHz}$	$\pm 2 \mathrm{~ns} \mathrm{pk}$-pk			
	Any 36 MHz	$\pm 0.5 \mathrm{~ns} \mathrm{pk}$-pk			
Isolation	IP - I/P	70 dB (typ.2), 55 dB (min.)		Between any pair of input ports Test condition: Full TX \& RX link with 1 m fibre link using transmitter SRY-TX-L1-103 (1310nm). Fixed gain mode	
	O/P - O/P	70 dB (typ.2), 55 dB (min.)		Between any pair of output ports Test condition: Full TX \& RX link with 1 m fibre link using transmitter SRY-TX-L1-103 (1310nm). Fixed gain mode	
	IIP - O/P	60 dB (typ.2), 50 dB (min.)		Between any pair of input and output ports Test condition: Full TX \& RX link with 1 m fibre link using transmitter SRY-TX-L1-103 (1310nm). Fixed gain mode	
Noise Figure (Typ.)		10 dB		Test condition: SRY-TX-L1-103, 0 dB optical link loss, -50 dBm RF i/p power, -10 dBm o/p power	
CNR (any 36 MHz)		38 dB (min.)			
Output P1 (Typ.)		+1 dBm		Test condition: SRY-TX-L1-103, 0 dB optical link loss, -50 dBm RF i/p power, -10 dBm o/p power	
Output IP3	Typical	18 dBm		Test condition: SRY-TX-L1-103, 1m fibre, 10 dB gain, -22 dBm tones at 2150 and 2152 MHz	
	Minimum	12 dBm			
SFDR	Typical	105 dB			
	Minimum	100 dB			
Spec Version		1.3			

Configuration Options:

Active Input Module (H-IN-02) with Passive Output Module (H-IO-01) - No LNB option Active Input Module (H-IN-05) with Passive Output Module (H-IO-01) - LNB option

Technical Specifications and Operating Parameters			
Capacity		128 inputs and 128 outputs, configurable in banks of 8 inputs/ outputs	
Frequency		850 to 2450 MHz	
Connector \& impedances		50Ω SMA, 50Ω BNC, 75Ω BNC \& 75Ω F-type	
LNB Powering			
LNB Power		Dependent upon IO modules	
LNB Current Alarm	Over-current	450 mA	Factory defaults (User settable)
	Under-current	50 mA	
LNB Short Circuit Protection		Electronic fuse	Automatic reset when short removed

Control, Monitoring and Alarms		
Remote Control \& Monitoring	Ethernet - RJ45 connector 10/100/1000BaseTx ETL Protocol over TCP SNMP Web Interface Grass Valley NVision NV90004	
HMI	Capacitive touch screen	
Secure Communications	$\begin{aligned} & \text { HTTPS } \\ & \text { SNMPv3 } \\ & \text { IPSEC } \end{aligned}$	
ETL Protocol Over TCP	Supports up to 32 concurrent connections	
Web Browser	Full remote control via web browser for 5 connections	
Alarms	Comprehensive alarm status via HMI display and communication protocols	
Switching Time	50ms max	Measured from receipt of command on serial port to establishment of RF signal
RF Level Alarms	Configurable upper and lower RF input level alarms	Local and remote reporting
Amplifier Status	Monitored	
Temperature Monitoring	Monitored individually	
Fan Monitoring		
PSU Loading		

Environmental Conditions			
Operating Temperature $\left({ }^{\circ} \mathrm{C}\right)$	0 to $45^{\circ} \mathrm{C}$		
Gain Stability versus Tem- perature	$0.05 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$		
Storage Temperature $\left({ }^{\circ} \mathrm{C}\right)$	$-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$		
Location	Indoor use only		
Humidity	20 to 90% non-condensing	\quad Relative Humidity	Alitude
:---			

Physical Dimensions \& Parameters	
Weight	Up to 100 kg
Dimensions	10 U high $\times 650 \mathrm{~mm}$ deep $\times 19$ " wide
Front Panel Colour	Pearl Dark Grey - RAL9023

Note 1: The specification is subject to regular reviews and will be updated from time to time as part of our continuing
product development and improved specification accuracy.
Note 2: Operation beyond the quoted limits stated above may cause instantaneous and permanent damage.

COMPLIANT

